Performance Optimization
Optimize your API for maximum performance and scalability.
Learn advanced techniques to improve your API's response times, throughput, and resource efficiency.
🎯 What You'll Learn​
- ✅ Performance monitoring and analysis
- ✅ Database optimization techniques
- ✅ Caching strategies
- ✅ Load balancing and scaling
- ✅ Code optimization
- ✅ Infrastructure optimization
📹 Performance Overview​
Replace this placeholder with your performance overview video
Understand the key factors that affect API performance and how to measure and optimize them.
📊 Performance Metrics​
Key Performance Indicators (KPIs)​
Response Time Metrics​
- Average Response Time: Mean time for API responses
- 95th Percentile: 95% of requests complete within this time
- 99th Percentile: 99% of requests complete within this time
- Maximum Response Time: Slowest request in the measurement period
Throughput Metrics​
- Requests Per Second (RPS): Number of requests handled per second
- Concurrent Users: Number of simultaneous active users
- Peak Load: Maximum traffic during high-usage periods
- Sustained Load: Consistent traffic over extended periods
Resource Utilization​
- CPU Usage: Processor utilization percentage
- Memory Usage: RAM consumption and garbage collection
- Database Connections: Active database connections
- Network I/O: Network bandwidth utilization
📹 Performance Monitoring​
Replace this placeholder with your performance monitoring demonstration
Learn how to set up comprehensive performance monitoring for your API.
🚀 Database Optimization​
Query Optimization​
Index Strategy​
-- Primary indexes (automatically created)
CREATE INDEX idx_users_id ON users(id);
-- Foreign key indexes
CREATE INDEX idx_posts_user_id ON posts(user_id);
CREATE INDEX idx_comments_post_id ON comments(post_id);
-- Search indexes
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_posts_title ON posts(title);
-- Composite indexes for complex queries
CREATE INDEX idx_posts_user_status ON posts(user_id, status);
CREATE INDEX idx_orders_date_status ON orders(created_at, status);
Query Analysis​
-- Analyze query performance
EXPLAIN ANALYZE SELECT * FROM users WHERE email = 'user@example.com';
-- Identify slow queries
SELECT query, mean_time, calls
FROM pg_stat_statements
ORDER BY mean_time DESC
LIMIT 10;
Database Connection Optimization​
Connection Pooling​
// PostgreSQL connection pooling
const { Pool } = require("pg");
const pool = new Pool({
user: "your_user",
host: "localhost",
database: "your_database",
password: "your_password",
port: 5432,
max: 20, // Maximum number of connections
idleTimeoutMillis: 30000,
connectionTimeoutMillis: 2000,
});
Query Optimization​
// Use prepared statements
const getUserById = async (id) => {
const query = "SELECT * FROM users WHERE id = $1";
const result = await pool.query(query, [id]);
return result.rows[0];
};
// Batch operations
const createMultipleUsers = async (users) => {
const query = "INSERT INTO users (name, email) VALUES ($1, $2)";
const values = users.map((user) => [user.name, user.email]);
await pool.query(query, values);
};
📹 Database Optimization​
Replace this placeholder with your database optimization demonstration
Learn advanced techniques for optimizing database queries and connections.
🚀 Caching Strategies​
Application-Level Caching​
In-Memory Caching​
// Simple in-memory cache
const cache = new Map();
const getCachedUser = async (userId) => {
const cacheKey = `user:${userId}`;
if (cache.has(cacheKey)) {
return cache.get(cacheKey);
}
const user = await db.users.findById(userId);
cache.set(cacheKey, user);
// Set expiration (5 minutes)
setTimeout(() => cache.delete(cacheKey), 5 * 60 * 1000);
return user;
};
Redis Caching​
const redis = require("redis");
const client = redis.createClient();
const getCachedData = async (key) => {
const cached = await client.get(key);
if (cached) return JSON.parse(cached);
const data = await fetchDataFromDatabase();
await client.setex(key, 3600, JSON.stringify(data)); // 1 hour
return data;
};
HTTP Caching​
Response Headers​
// Set cache headers
app.get("/api/users", (req, res) => {
res.set({
"Cache-Control": "public, max-age=300", // 5 minutes
ETag: generateETag(data),
"Last-Modified": new Date().toUTCString(),
});
res.json(users);
});
CDN Integration​
// CDN-friendly caching
app.get("/api/static/:id", (req, res) => {
res.set({
"Cache-Control": "public, max-age=31536000", // 1 year
ETag: generateETag(staticData),
});
res.json(staticData);
});
📹 Caching Implementation​
Replace this placeholder with your caching implementation demonstration
Learn how to implement various caching strategies to improve API performance.
🚀 Code Optimization​
JavaScript/Node.js Optimization​
Async/Await Best Practices​
// Good: Parallel execution
const [users, posts, comments] = await Promise.all([
db.users.findAll(),
db.posts.findAll(),
db.comments.findAll(),
]);
// Bad: Sequential execution
const users = await db.users.findAll();
const posts = await db.posts.findAll();
const comments = await db.comments.findAll();
Memory Management​
// Efficient data processing
const processLargeDataset = (data) => {
// Use streams for large datasets
const stream = require("stream");
const transform = new stream.Transform({
objectMode: true,
transform(chunk, encoding, callback) {
// Process chunk
const processed = processChunk(chunk);
callback(null, processed);
},
});
return data.pipe(transform);
};
API Response Optimization​
Response Compression​
const compression = require("compression");
app.use(compression());
// Custom compression for specific routes
app.get("/api/large-data", compression(), (req, res) => {
res.json(largeDataset);
});
Pagination Optimization​
// Efficient pagination
const getPaginatedUsers = async (page = 1, limit = 10) => {
const offset = (page - 1) * limit;
const [users, total] = await Promise.all([
db.users.findAll({
limit,
offset,
order: [["created_at", "DESC"]],
}),
db.users.count(),
]);
return {
data: users,
pagination: {
page,
limit,
total,
pages: Math.ceil(total / limit),
},
};
};
📹 Code Optimization​
Replace this placeholder with your code optimization demonstration
Learn how to optimize your API code for better performance and efficiency.
🚀 Infrastructure Optimization​
Load Balancing​
Application Load Balancing​
# Nginx load balancer configuration
upstream api_backend {
server api1.example.com:3000;
server api2.example.com:3000;
server api3.example.com:3000;
}
server {
listen 80;
location /api/ {
proxy_pass http://api_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
Database Load Balancing​
// Read/write splitting
const readDB = new Pool({
host: "read-replica.example.com",
// ... other config
});
const writeDB = new Pool({
host: "master.example.com",
// ... other config
});
// Route reads to replica, writes to master
const getUsers = () => readDB.query("SELECT * FROM users");
const createUser = (user) => writeDB.query("INSERT INTO users ...", [user]);
Auto-scaling Configuration​
Horizontal Pod Autoscaler (Kubernetes)​
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: api-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: api-deployment
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
📹 Infrastructure Scaling​
Replace this placeholder with your infrastructure scaling demonstration
Learn how to scale your API infrastructure to handle increased load and traffic.
🚀 Performance Testing​
Load Testing​
Load Testing Tools​
# Using Apache Bench
ab -n 1000 -c 10 http://localhost:3000/api/users
# Using Artillery
artillery quick --count 100 --num 10 http://localhost:3000/api/users
# Using k6
k6 run --vus 10 --duration 30s load-test.js
Load Testing Script (k6)​
import http from "k6/http";
import { check } from "k6";
export let options = {
stages: [
{ duration: "2m", target: 100 }, // Ramp up
{ duration: "5m", target: 100 }, // Stay at 100 users
{ duration: "2m", target: 200 }, // Ramp up to 200 users
{ duration: "5m", target: 200 }, // Stay at 200 users
{ duration: "2m", target: 0 }, // Ramp down
],
};
export default function () {
let response = http.get("http://localhost:3000/api/users");
check(response, {
"status is 200": (r) => r.status === 200,
"response time < 500ms": (r) => r.timings.duration < 500,
});
}
Performance Profiling​
Node.js Profiling​
// CPU profiling
const profiler = require("v8-profiler-node8");
// Start profiling
profiler.startProfiling("api-profile");
// Stop profiling after some time
setTimeout(() => {
const profile = profiler.stopProfiling("api-profile");
profile
.export()
.pipe(fs.createWriteStream("profile.cpuprofile"))
.on("finish", () => profile.delete());
}, 30000);
📹 Performance Testing​
Replace this placeholder with your performance testing demonstration
Learn how to conduct comprehensive performance testing to identify bottlenecks and optimize your API.
🎯 Performance Best Practices​
General Optimization​
Always measure performance before and after optimizations
Focus on the most frequently used code paths
Choose the right data structure for your use case
Cache at the right level for maximum benefit
Database Optimization​
Add indexes to columns used in WHERE clauses
Optimize database connections for better performance
Use EXPLAIN ANALYZE to identify slow queries
Use read replicas for read-heavy workloads
Infrastructure Optimization​
Distribute traffic across multiple instances
Automatically scale based on demand
Cache static content closer to users
Set up comprehensive monitoring and alerting
🚀 Next Steps​
Your API is Optimized!​
After implementing performance optimizations:
- Monitor Performance: Track improvements and identify new bottlenecks
- Regular Testing: Conduct periodic performance tests
- Continuous Optimization: Keep optimizing based on usage patterns
- Scale as Needed: Plan for future growth and scaling
Learn More​
Advanced Topics​
Ready to monitor your optimized API? Learn about monitoring → 🚀